OneBook(Python & Deep Learning)
  • 한곳에서 끝내는 파이썬 & 머신러닝 & 딥러닝
  • 문서 작업을 시작하며
  • 1. 인공지능(Artificial Intelligence) 시대
    • 1.1. 인공지능이란 도대체 무엇인가?
    • 1.2. 4차 산업혁명
    • 1.3. 인공지능의 역사
    • 1.4. 인공지능 > 머신러닝 > 딥러닝
    • 1.5. 머신러닝
    • 1.6. 머신러닝 알고리즘
      • 1.6.1. 지도 학습 (Supervised Learning)
      • 1.6.2. 비지도 학습 (Unsupervised learning)
      • 1.6.3. 강화 학습(Reinforcement Learning)
    • 1.7. 인공신경망(ANN)
    • 1.8. 딥러닝
  • 2. 기본 상식
    • 2.1. 기본 용어의 이해
      • 2.1.1. CPU와 GPU의 차이
      • 2.1.2. 오픈소스(Open Source)
      • 2.1.3. 깃허브(GitHub)
      • 2.1.4. 위키 Wiki
      • 2.1.5. 아나콘다(Anaconda)
      • 2.1.6. 활성화 함수
      • 2.1.5. 딥러닝 프레임워크 소개
    • 2.2. 텐서플로(Tensorflow)
    • 2.3. 케라스(Keras)
    • 2.4. 파이토치(PyTorch)
    • 2.5. 학습에 필요한 중요한 도구와 라이브러리들
      • 2.5.1. 주피터 노트북(Jupyter Notebook)
      • 2.5.2. 파이참(PyCharm)
      • 2.5.3. 스파이더(Spyder)
      • 2.5.4. 넘파이(NumPy)
      • 2.5.5. 싸이파이(SciPy)
      • 2.5.6. Matplotlib
      • 2.5.7. 판다스(Pandas)
      • 2.5.8. 장고(Django)
      • 2.5.9. 파이큐티(pyQT)
      • 2.5.10. 싸이킷런(Scikit-learn)(Sklearn)
      • 2.5.11. CUDA & cuDNN
      • 2.5.12. 파이썬 표준 내장 라이브러리
    • 2.6. AI공부에 필요한 기본지식 3가지
      • 2.6.1. 수학
      • 2.6.2. 프로그래밍 기술
      • 2.6.3. AI의 적용 대상 산업에 대한 지식
  • 3. 개발 환경설정
    • 3.1. 윈도우 환경에서 설치하기
      • 3.1.1. 아나콘다 설치 (파이썬 설치)
        • 1) 아나콘다 패키지 업데이트
        • 2) conda에서 파이썬 가상 환경 (virtual environments) 생성하기
        • 3) NVIDIA GPU 환경 설정하기
      • 3.1.2. 텐서플로 설치
      • 3.1.3. 케라스 설치
      • 3.1.4. Jupyter Notebook 설치
      • 3.1.5. Visual Studio Code 설치
      • 3.1.6. 파이참 설치
        • 1) 파이참 가상환경 설정
        • 2) 파이참 환경 설정
        • 3) 설치된 라이브러리들의 버전 확인 하기
    • 3.2. 리눅스 환경에서 설치하기
      • 3.2.1. 아나콘다 설치(파이썬 설치)
      • 3.2.2. 텐서플로 설치
      • 3.2.3. 케라스 설치
      • 3.2.4. 장고 설치
      • 3.2.5. 파이참(PyCharm) 설치
        • 1) 파이참 가상환경 설정
  • 4. 파이썬 기초 학습
    • 4.1. 파이썬(Python)
    • 4.2. 파이썬의 특징
    • 4.3. 파이썬 기본 문법
      • 4.3.1. 대화형과 스크립트 모드 프로그래밍
      • 4.3.2. 모듈의 사용(import)
      • 4.3.3. 파이썬 식별자(Identifiers)
      • 4.3.4. 예약어(Reserved Words)
      • 4.3.5. 행(Lines)과 들여쓰기(Indentation)
      • 4.3.6. 문자열 표시
      • 4.3.7. 주석
      • 4.3.8. 파이썬 변수(Variables)
    • 4.4. 자료형과 연산자
      • 4.4.1. 자료형
      • 4.4.2. 파이썬 연산자
    • 4.5. 조건문과 반복문
      • 4.5.1. 조건문
      • 4.5.2. 반복문
    • 4.6. 함수
      • 4.6.1. 함수의 종류
    • 4.7. 모듈(Modules)
      • 4.7.1. 모듈의 참조 위치
      • 4.7.2. 네임스페이스(Namespace)와 범위(Scoping)
      • 4.7.3. dir( ) 함수
      • 4.7.4. 패키지(Packages)
      • 4.7.5. 기본 내장 모듈
    • 4.8. 숫자형 활용
      • 4.8.1. 실습: 계산기 만들기
    • 4.9. 문자열(Strings) 활용
      • 4.9.1. Unicode 한글의 사용
      • 4.9.2. 이스케이프 문자
      • 4.9.3. 문자열 연산자
      • 4.9.4. 문자열 포맷 연산자
      • 4.9.5. 내장 문자열 함수
    • 4.10. 시퀀스(Sequence) 자료형 활용
      • 4.10.1. 리스트(Lists)
      • 4.10.2. 튜플(Tuple)
      • 4.10.3. 딕셔너리(Dictionary)
    • 4.11 Class
    • 4.12. Date & Time
    • 4.13. 파이썬 에러처리
  • 5. 기초수학
  • 6. 머신러닝을 위한 파이썬
  • 7. 텐서플로 2.x
  • 8. 딥러닝을 이용한 자연어 처리 입문
  • 9. 파이토치로 시작하는 딥 러닝 입문
  • 9.6 6. Pytorch lightning
  • A1. 필수 학습 라이브러리들
    • 4.1 NumPy
      • 4.1.1. Basic Operations
      • 4.1.2. Indexing, Slicing 그리고 Iterating
      • 3.13.3. Shape Manipulation
    • 4.2 Matplotlib
    • 4.3 SciPy
      • 4.3.1. Interpolation
      • 4.3.2. Optimization
      • 4.3.3. Fast Fourier transforms: scipy.fftpack
    • 4.4 Pandas
      • 4.4.1 Pandas 자료구조
      • 4.4.2 Pandas 활용하기
  • A2. 머신러닝 & 딥러닝
    • 5.1. 머신러닝 개념 소개
      • 5.1.1. 경사하강법(Gradient Descent )
      • 5.1.2. 분류 (Classification)
      • 5.1.3. MNIST Dataset 소개
    • 5.2. 딥러닝 개념 소개
      • 5.2.1. 퍼셉트론
      • 5.2.2. 인공 신경망
      • 5.2.3. 대표적인 딥러닝 모델
    • 5.3. Tensorflow를 사용한 학습
      • 5.3.1. TensorFlow 기본 메커니즘
      • 5.3.2. Tensorflow Types
      • 5.3.3. 기본 동작 실습
      • 5.3.4. 선형 회귀
      • 5.3.5 로지스틱 회귀
    • 5.4. Keras를 사용한 학습
      • 5.4.1. Keras로 분석한 선형 회귀
      • 5.4.2. CNN(Convolutional Neural Network)
      • 5.4.3. Fashion MNIST with Keras
    • 5.5. 웹 크롤링
      • 5.5.1. requests와 BeautifulSoup으로 웹 크롤러 만들기
Powered by GitBook
On this page

Was this helpful?

  1. A2. 머신러닝 & 딥러닝

5.4. Keras를 사용한 학습

Previous5.3.5 로지스틱 회귀Next5.4.1. Keras로 분석한 선형 회귀

Last updated 6 years ago

Was this helpful?

가장 유명한 딥러닝 라이브러리는 텐서플로와 케라스를 들수 있습니다. 이번 챕터에서는 케라스의 사용법을 설명하겠습니다.

다음은 간단한 XOR 문제를 학습하는 코드를 비교한 것인데 함수 사용에 있어서 큰 차이가 있음을 알 수 있습니다.

source:

import numpy as np
from keras.models import Sequential
from keras.layers.core import Activation, Dense
training_data = np.array([[0,0],[0,1],[1,0],[1,1]], "float32")
target_data = np.array([[0],[1],[1],[0]], "float32")
model = Sequential()
model.add(Dense(32, input_dim=2, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['binary_accuracy'])
model.fit(training_data, target_data, nb_epoch=1000, verbose=2)
print model.predict(training_data)

import tensorflow as tf   
input_data = [[0., 0.], [0., 1.], [1., 0.], [1., 1.]]  # XOR input
output_data = [[0.], [1.], [1.], [0.]]  # XOR output
n_input = tf.placeholder(tf.float32, shape=[None, 2], name="n_input")
n_output = tf.placeholder(tf.float32, shape=[None, 1], name="n_output")
hidden_nodes = 5
b_hidden = tf.Variable(tf.random_normal([hidden_nodes]), name="hidden_bias")
W_hidden = tf.Variable(tf.random_normal([2, hidden_nodes]), name="hidden_weights")
hidden = tf.sigmoid(tf.matmul(n_input, W_hidden) + b_hidden)
W_output = tf.Variable(tf.random_normal([hidden_nodes, 1]), name="output_weights")  # output layer's weight matrix
output = tf.sigmoid(tf.matmul(hidden, W_output))  # calc output layer's activation
cross_entropy = tf.square(n_output - output)  # simpler, but also works
loss = tf.reduce_mean(cross_entropy)  # mean the cross_entropy
optimizer = tf.train.AdamOptimizer(0.01)  # take a gradient descent for optimizing with a "stepsize" of 0.1
train = optimizer.minimize(loss)  # let the optimizer train
init = tf.initialize_all_variables()
sess = tf.Session()  # create the session and therefore the graph
sess.run(init)  # initialize all variables 
for epoch in xrange(0, 2001):
    # run the training operation
    cvalues = sess.run([train, loss, W_hidden, b_hidden, W_output],
                       feed_dict={n_input: input_data, n_output: output_data})
    if epoch % 200 == 0:
        print("")
        print("step: {:>3}".format(epoch))
        print("loss: {}".format(cvalues[1]))
print("")
print("input: {} | output: {}".format(input_data[0], sess.run(output, feed_dict={n_input: [input_data[0]]})))
print("input: {} | output: {}".format(input_data[1], sess.run(output, feed_dict={n_input: [input_data[1]]})))
print("input: {} | output: {}".format(input_data[2], sess.run(output, feed_dict={n_input: [input_data[2]]})))
print("input: {} | output: {}".format(input_data[3], sess.run(output, feed_dict={n_input: [input_data[3]]})))

케라스는 model 인스턴스를 생성하고 그 위에 add로 하나씩 레이어를 쌓습니다. 그리고 compile로 오차계산(loss)과 학습방법(optimizer)을 결정하고, 마지막으로 fit을 사용해 데이터를 입력하여 학습을 시작합니다.

이에 반해서 텐서플로는 신경망의 가중치(w)와 편향(b) 변수를 직접 선언하고 tf.matmul로 행렬계산을 하는 코드를 작성해야 합니다. 특히 행렬의 입력과 출력의 개수를 정확히 맞춰줘야 하는데 케라스는 이런 과정을 자동으로 수행합니다.

확실히 케라스가 좀 더 직관적이고 사용하기가 간단합니다. 하지만 텐서플로는 구글이라는 브랜드 파워가 있고 사용자가 훨씬 많아서 예제를 찾거나 질문하기가 수월하다는 장점이 있습니다. 자신의 사용 목적에 따라서 어떤 라이브러리를 사용할 지 결정하는 게 좋을 것 같습니다.

https://gist.github.com/cburgdorf/e2fb46e5ad61ed7b9a29029c5cc30134
xor_keras.py
xor_tensorflow.py