OneBook(Python & Deep Learning)
  • 한곳에서 끝내는 파이썬 & 머신러닝 & 딥러닝
  • 문서 작업을 시작하며
  • 1. 인공지능(Artificial Intelligence) 시대
    • 1.1. 인공지능이란 도대체 무엇인가?
    • 1.2. 4차 산업혁명
    • 1.3. 인공지능의 역사
    • 1.4. 인공지능 > 머신러닝 > 딥러닝
    • 1.5. 머신러닝
    • 1.6. 머신러닝 알고리즘
      • 1.6.1. 지도 학습 (Supervised Learning)
      • 1.6.2. 비지도 학습 (Unsupervised learning)
      • 1.6.3. 강화 학습(Reinforcement Learning)
    • 1.7. 인공신경망(ANN)
    • 1.8. 딥러닝
  • 2. 기본 상식
    • 2.1. 기본 용어의 이해
      • 2.1.1. CPU와 GPU의 차이
      • 2.1.2. 오픈소스(Open Source)
      • 2.1.3. 깃허브(GitHub)
      • 2.1.4. 위키 Wiki
      • 2.1.5. 아나콘다(Anaconda)
      • 2.1.6. 활성화 함수
      • 2.1.5. 딥러닝 프레임워크 소개
    • 2.2. 텐서플로(Tensorflow)
    • 2.3. 케라스(Keras)
    • 2.4. 파이토치(PyTorch)
    • 2.5. 학습에 필요한 중요한 도구와 라이브러리들
      • 2.5.1. 주피터 노트북(Jupyter Notebook)
      • 2.5.2. 파이참(PyCharm)
      • 2.5.3. 스파이더(Spyder)
      • 2.5.4. 넘파이(NumPy)
      • 2.5.5. 싸이파이(SciPy)
      • 2.5.6. Matplotlib
      • 2.5.7. 판다스(Pandas)
      • 2.5.8. 장고(Django)
      • 2.5.9. 파이큐티(pyQT)
      • 2.5.10. 싸이킷런(Scikit-learn)(Sklearn)
      • 2.5.11. CUDA & cuDNN
      • 2.5.12. 파이썬 표준 내장 라이브러리
    • 2.6. AI공부에 필요한 기본지식 3가지
      • 2.6.1. 수학
      • 2.6.2. 프로그래밍 기술
      • 2.6.3. AI의 적용 대상 산업에 대한 지식
  • 3. 개발 환경설정
    • 3.1. 윈도우 환경에서 설치하기
      • 3.1.1. 아나콘다 설치 (파이썬 설치)
        • 1) 아나콘다 패키지 업데이트
        • 2) conda에서 파이썬 가상 환경 (virtual environments) 생성하기
        • 3) NVIDIA GPU 환경 설정하기
      • 3.1.2. 텐서플로 설치
      • 3.1.3. 케라스 설치
      • 3.1.4. Jupyter Notebook 설치
      • 3.1.5. Visual Studio Code 설치
      • 3.1.6. 파이참 설치
        • 1) 파이참 가상환경 설정
        • 2) 파이참 환경 설정
        • 3) 설치된 라이브러리들의 버전 확인 하기
    • 3.2. 리눅스 환경에서 설치하기
      • 3.2.1. 아나콘다 설치(파이썬 설치)
      • 3.2.2. 텐서플로 설치
      • 3.2.3. 케라스 설치
      • 3.2.4. 장고 설치
      • 3.2.5. 파이참(PyCharm) 설치
        • 1) 파이참 가상환경 설정
  • 4. 파이썬 기초 학습
    • 4.1. 파이썬(Python)
    • 4.2. 파이썬의 특징
    • 4.3. 파이썬 기본 문법
      • 4.3.1. 대화형과 스크립트 모드 프로그래밍
      • 4.3.2. 모듈의 사용(import)
      • 4.3.3. 파이썬 식별자(Identifiers)
      • 4.3.4. 예약어(Reserved Words)
      • 4.3.5. 행(Lines)과 들여쓰기(Indentation)
      • 4.3.6. 문자열 표시
      • 4.3.7. 주석
      • 4.3.8. 파이썬 변수(Variables)
    • 4.4. 자료형과 연산자
      • 4.4.1. 자료형
      • 4.4.2. 파이썬 연산자
    • 4.5. 조건문과 반복문
      • 4.5.1. 조건문
      • 4.5.2. 반복문
    • 4.6. 함수
      • 4.6.1. 함수의 종류
    • 4.7. 모듈(Modules)
      • 4.7.1. 모듈의 참조 위치
      • 4.7.2. 네임스페이스(Namespace)와 범위(Scoping)
      • 4.7.3. dir( ) 함수
      • 4.7.4. 패키지(Packages)
      • 4.7.5. 기본 내장 모듈
    • 4.8. 숫자형 활용
      • 4.8.1. 실습: 계산기 만들기
    • 4.9. 문자열(Strings) 활용
      • 4.9.1. Unicode 한글의 사용
      • 4.9.2. 이스케이프 문자
      • 4.9.3. 문자열 연산자
      • 4.9.4. 문자열 포맷 연산자
      • 4.9.5. 내장 문자열 함수
    • 4.10. 시퀀스(Sequence) 자료형 활용
      • 4.10.1. 리스트(Lists)
      • 4.10.2. 튜플(Tuple)
      • 4.10.3. 딕셔너리(Dictionary)
    • 4.11 Class
    • 4.12. Date & Time
    • 4.13. 파이썬 에러처리
  • 5. 기초수학
  • 6. 머신러닝을 위한 파이썬
  • 7. 텐서플로 2.x
  • 8. 딥러닝을 이용한 자연어 처리 입문
  • 9. 파이토치로 시작하는 딥 러닝 입문
  • 9.6 6. Pytorch lightning
  • A1. 필수 학습 라이브러리들
    • 4.1 NumPy
      • 4.1.1. Basic Operations
      • 4.1.2. Indexing, Slicing 그리고 Iterating
      • 3.13.3. Shape Manipulation
    • 4.2 Matplotlib
    • 4.3 SciPy
      • 4.3.1. Interpolation
      • 4.3.2. Optimization
      • 4.3.3. Fast Fourier transforms: scipy.fftpack
    • 4.4 Pandas
      • 4.4.1 Pandas 자료구조
      • 4.4.2 Pandas 활용하기
  • A2. 머신러닝 & 딥러닝
    • 5.1. 머신러닝 개념 소개
      • 5.1.1. 경사하강법(Gradient Descent )
      • 5.1.2. 분류 (Classification)
      • 5.1.3. MNIST Dataset 소개
    • 5.2. 딥러닝 개념 소개
      • 5.2.1. 퍼셉트론
      • 5.2.2. 인공 신경망
      • 5.2.3. 대표적인 딥러닝 모델
    • 5.3. Tensorflow를 사용한 학습
      • 5.3.1. TensorFlow 기본 메커니즘
      • 5.3.2. Tensorflow Types
      • 5.3.3. 기본 동작 실습
      • 5.3.4. 선형 회귀
      • 5.3.5 로지스틱 회귀
    • 5.4. Keras를 사용한 학습
      • 5.4.1. Keras로 분석한 선형 회귀
      • 5.4.2. CNN(Convolutional Neural Network)
      • 5.4.3. Fashion MNIST with Keras
    • 5.5. 웹 크롤링
      • 5.5.1. requests와 BeautifulSoup으로 웹 크롤러 만들기
Powered by GitBook
On this page

Was this helpful?

  1. 2. 기본 상식
  2. 2.1. 기본 용어의 이해

2.1.1. CPU와 GPU의 차이

Previous2.1. 기본 용어의 이해Next2.1.2. 오픈소스(Open Source)

Last updated 4 years ago

Was this helpful?

GPU (Graphics Processing Unit), CPU (Central Processing Unit)

CPU는 컴퓨터의 두뇌를 담당합니다. 다양한 환경에서의 작업을 빠르게 수행하기 위해 ALU의 구조가 복잡하고 명령어 하나로 처리할 수 있는 기능도 많으며 각종 제어 처리를 위한 부분이 많습니다. 반면 GPU는 특화된 연산을 빠른 속도로 처리하기 위해 단순한 ALU를 여러개 갖고 있는 구조로 이루어져 있습니졌다. 이 때문에 GPU 단독으로는 아무것도 처리할 수 없으며 GPU를 제어하는 것은 여전히 CPU의 역할입니다.

CPU는 입출력장치, 기억장치, 연산장치를 비롯한 컴퓨터 리소스를 이용하는 최상위 계층 장치인 '중앙처리장치'로써, 컴퓨터의 두뇌와 같은 역할을 담당합니다. 따라서 데이터 처리와 더불어 프로그램에서 분석한 알고리즘에 따라 다음 행동을 결정하고 멀티태스킹을 위해 나눈 작업들에 우선순위를 지정하고 전환하며 가상 메모리를 관리하는 등 컴퓨터를 지휘하는 역할을 수행합니다. 컴퓨터 프로그램의 대부분은 복잡한 순서를 가진 알고리즘을 가지고 작동하므로 CPU가 적합하다.

GPU는 비디오, 즉 픽셀로 이루어진 영상을 처리하는 용도로 탄생했습니다. 이때문에 CPU에 비해 반복적이고 비슷한, 대량의 연산을 수행하며 이를 병렬적으로(Parallel) 나누어 작업하기 때문에 CPU에 비해 속도가 대단히 빠릅니다. 영상, 렌더링을 비롯한 그래픽 작업의 경우 픽셀 하나하나에 대해 연산을 하기 때문에 연산능력이 비교적 떨어지는 CPU가 GPU로 데이터를 보내 재빠르게 처리합니다.

CPU와 GPU의 차이는 그 작업 처리 방식을 비교해보면 쉽게 알 수 있습니다. 하나의 CPU는 직렬 처리에 최적화된 몇 개의 코어로 구성된 반면, GPU는 병렬 처리용으로 설계된 수 천 개의 보다 소형이고 효율적인 코어로 구성되었습니다.

CPU 는 GPU 보다 더 적은 코어를 갖고 있지만 각각의 코어가 GPU 보다 더 강력한 컴퓨팅 파워를 갖고 있습니다. 따라서 CPU 는 순차적인 작업 (Sequential task) 에 더 강점이 있습니다다. 반면 GPU 는 CPU 보다 코어수는 많지만 각각의 코어가 GPU 보다 더 성능이 낮기 때문에 병렬적인 작업 (Paralell task) 에 더 강점이 습니있다.

현재 PC 에서 사용되는 CPU 의 코어는 보통 4~10개 정도이며 hyperthreading 기술을 통해 thread 를 2배 정도 늘릴 수 있습니다. 예를 들어 8 코어 16 threads CPU 의 경우, 병렬적으로 16개의 task 를 수행할 수 있다는 뜻입니다. 반면, 예를 들어 NVIDIA 의 Tital XP GPU 의 경우 3840 코어를 갖고 있습다. 또 최근 출시된 2080 TI 의 경우 4,352 개의 코어를 갖고 있다습. threading 을 감안하더라도 CPU와 GPU 의 코어 수의 차이는 200 배 이상이 됩니.

GPU는 병렬 처리를 효율적으로 처리하기 위한 수천 개의 코어를 가지고 있습니다. 어플리케이션의 연산집약적인 부분을 GPU로 넘기고 나머지 코드만을 CPU에서 처리하는 GPU 가속 컴퓨팅은 특히 딥러닝, 머신러닝 영역에서 강력한 성능을 제공합니다. 사용자 입장에서는 연산 속도가 놀라울 정도로 빨라졌음을 느낄 수 있습니다.

https://kr.nvidia.com/object/what-is-gpu-computing-kr.html