OneBook(Python & Deep Learning)
  • 한곳에서 끝내는 파이썬 & 머신러닝 & 딥러닝
  • 문서 작업을 시작하며
  • 1. 인공지능(Artificial Intelligence) 시대
    • 1.1. 인공지능이란 도대체 무엇인가?
    • 1.2. 4차 산업혁명
    • 1.3. 인공지능의 역사
    • 1.4. 인공지능 > 머신러닝 > 딥러닝
    • 1.5. 머신러닝
    • 1.6. 머신러닝 알고리즘
      • 1.6.1. 지도 학습 (Supervised Learning)
      • 1.6.2. 비지도 학습 (Unsupervised learning)
      • 1.6.3. 강화 학습(Reinforcement Learning)
    • 1.7. 인공신경망(ANN)
    • 1.8. 딥러닝
  • 2. 기본 상식
    • 2.1. 기본 용어의 이해
      • 2.1.1. CPU와 GPU의 차이
      • 2.1.2. 오픈소스(Open Source)
      • 2.1.3. 깃허브(GitHub)
      • 2.1.4. 위키 Wiki
      • 2.1.5. 아나콘다(Anaconda)
      • 2.1.6. 활성화 함수
      • 2.1.5. 딥러닝 프레임워크 소개
    • 2.2. 텐서플로(Tensorflow)
    • 2.3. 케라스(Keras)
    • 2.4. 파이토치(PyTorch)
    • 2.5. 학습에 필요한 중요한 도구와 라이브러리들
      • 2.5.1. 주피터 노트북(Jupyter Notebook)
      • 2.5.2. 파이참(PyCharm)
      • 2.5.3. 스파이더(Spyder)
      • 2.5.4. 넘파이(NumPy)
      • 2.5.5. 싸이파이(SciPy)
      • 2.5.6. Matplotlib
      • 2.5.7. 판다스(Pandas)
      • 2.5.8. 장고(Django)
      • 2.5.9. 파이큐티(pyQT)
      • 2.5.10. 싸이킷런(Scikit-learn)(Sklearn)
      • 2.5.11. CUDA & cuDNN
      • 2.5.12. 파이썬 표준 내장 라이브러리
    • 2.6. AI공부에 필요한 기본지식 3가지
      • 2.6.1. 수학
      • 2.6.2. 프로그래밍 기술
      • 2.6.3. AI의 적용 대상 산업에 대한 지식
  • 3. 개발 환경설정
    • 3.1. 윈도우 환경에서 설치하기
      • 3.1.1. 아나콘다 설치 (파이썬 설치)
        • 1) 아나콘다 패키지 업데이트
        • 2) conda에서 파이썬 가상 환경 (virtual environments) 생성하기
        • 3) NVIDIA GPU 환경 설정하기
      • 3.1.2. 텐서플로 설치
      • 3.1.3. 케라스 설치
      • 3.1.4. Jupyter Notebook 설치
      • 3.1.5. Visual Studio Code 설치
      • 3.1.6. 파이참 설치
        • 1) 파이참 가상환경 설정
        • 2) 파이참 환경 설정
        • 3) 설치된 라이브러리들의 버전 확인 하기
    • 3.2. 리눅스 환경에서 설치하기
      • 3.2.1. 아나콘다 설치(파이썬 설치)
      • 3.2.2. 텐서플로 설치
      • 3.2.3. 케라스 설치
      • 3.2.4. 장고 설치
      • 3.2.5. 파이참(PyCharm) 설치
        • 1) 파이참 가상환경 설정
  • 4. 파이썬 기초 학습
    • 4.1. 파이썬(Python)
    • 4.2. 파이썬의 특징
    • 4.3. 파이썬 기본 문법
      • 4.3.1. 대화형과 스크립트 모드 프로그래밍
      • 4.3.2. 모듈의 사용(import)
      • 4.3.3. 파이썬 식별자(Identifiers)
      • 4.3.4. 예약어(Reserved Words)
      • 4.3.5. 행(Lines)과 들여쓰기(Indentation)
      • 4.3.6. 문자열 표시
      • 4.3.7. 주석
      • 4.3.8. 파이썬 변수(Variables)
    • 4.4. 자료형과 연산자
      • 4.4.1. 자료형
      • 4.4.2. 파이썬 연산자
    • 4.5. 조건문과 반복문
      • 4.5.1. 조건문
      • 4.5.2. 반복문
    • 4.6. 함수
      • 4.6.1. 함수의 종류
    • 4.7. 모듈(Modules)
      • 4.7.1. 모듈의 참조 위치
      • 4.7.2. 네임스페이스(Namespace)와 범위(Scoping)
      • 4.7.3. dir( ) 함수
      • 4.7.4. 패키지(Packages)
      • 4.7.5. 기본 내장 모듈
    • 4.8. 숫자형 활용
      • 4.8.1. 실습: 계산기 만들기
    • 4.9. 문자열(Strings) 활용
      • 4.9.1. Unicode 한글의 사용
      • 4.9.2. 이스케이프 문자
      • 4.9.3. 문자열 연산자
      • 4.9.4. 문자열 포맷 연산자
      • 4.9.5. 내장 문자열 함수
    • 4.10. 시퀀스(Sequence) 자료형 활용
      • 4.10.1. 리스트(Lists)
      • 4.10.2. 튜플(Tuple)
      • 4.10.3. 딕셔너리(Dictionary)
    • 4.11 Class
    • 4.12. Date & Time
    • 4.13. 파이썬 에러처리
  • 5. 기초수학
  • 6. 머신러닝을 위한 파이썬
  • 7. 텐서플로 2.x
  • 8. 딥러닝을 이용한 자연어 처리 입문
  • 9. 파이토치로 시작하는 딥 러닝 입문
  • 9.6 6. Pytorch lightning
  • A1. 필수 학습 라이브러리들
    • 4.1 NumPy
      • 4.1.1. Basic Operations
      • 4.1.2. Indexing, Slicing 그리고 Iterating
      • 3.13.3. Shape Manipulation
    • 4.2 Matplotlib
    • 4.3 SciPy
      • 4.3.1. Interpolation
      • 4.3.2. Optimization
      • 4.3.3. Fast Fourier transforms: scipy.fftpack
    • 4.4 Pandas
      • 4.4.1 Pandas 자료구조
      • 4.4.2 Pandas 활용하기
  • A2. 머신러닝 & 딥러닝
    • 5.1. 머신러닝 개념 소개
      • 5.1.1. 경사하강법(Gradient Descent )
      • 5.1.2. 분류 (Classification)
      • 5.1.3. MNIST Dataset 소개
    • 5.2. 딥러닝 개념 소개
      • 5.2.1. 퍼셉트론
      • 5.2.2. 인공 신경망
      • 5.2.3. 대표적인 딥러닝 모델
    • 5.3. Tensorflow를 사용한 학습
      • 5.3.1. TensorFlow 기본 메커니즘
      • 5.3.2. Tensorflow Types
      • 5.3.3. 기본 동작 실습
      • 5.3.4. 선형 회귀
      • 5.3.5 로지스틱 회귀
    • 5.4. Keras를 사용한 학습
      • 5.4.1. Keras로 분석한 선형 회귀
      • 5.4.2. CNN(Convolutional Neural Network)
      • 5.4.3. Fashion MNIST with Keras
    • 5.5. 웹 크롤링
      • 5.5.1. requests와 BeautifulSoup으로 웹 크롤러 만들기
Powered by GitBook
On this page

Was this helpful?

  1. A1. 필수 학습 라이브러리들
  2. 4.4 Pandas

4.4.1 Pandas 자료구조

Previous4.4 PandasNext4.4.2 Pandas 활용하기

Last updated 6 years ago

Was this helpful?

pandas는 크게 세가지의 자료구조를 지원하고 있는데, 1차원 자료구조인 Series, 2차원 자료구조인 DataFrame, 그리고 3차원 자료구조인 Panel을 지원합니다.

pandas 에는 효과적인 데이터 분석을 위한 고수준의 자료구조와 데이터 분석 도구를 제공합니다. pandas의 Series는 1차원 데이터를 다루는 데 효과적인 자료구조이며, DataFrame은 행과 열로 구성된 2차원 데이터를 다루는 데 효과적인 자료구조입니다.

Pandas에서 제공하는 자료 구조들이 무엇이 있는지 더 자세히 알아보시려면 pandas documentation에 있는 을 참고하시면 됩니다.

Series

Series는 value와 index의 형태를 지니는 Pandas의 자료 구조입니다.

가장 간단한 1차원 자료구조인 Series는 배열/리스트와 같은 일련의 시퀀스 데이타를 받아들이는데, 별도의 인덱스 레이블을 지정하지 않으면 자동적으로 0부터 시작되는 디폴트 정수 인덱스를 사용합니다.

 import pandas as pd
 dict = {'a':1,'b':2,'c':3,'d':4}
 data = [1, 3, 5, 7, 9]
 u = pd.Series(dict)
 print(u)
 s = pd.Series(data)
 print(s)

위의 예제를 실행해 보면 다음과 같이 출력 됩니다.

a    1
b    2
c    3
d    4
dtype: int64
0    1
1    3
2    5
3    7
4    9
dtype: int64

인덱스를 주면 해당 인덱스와 값으로 만들어 지고 인덱스가 없으면 자동으로 인덱스가 정렬됩니다.

DataFrame

pandas의 Series가 1차원 형태의 자료구조라면 DataFrame은 여러 개의 칼럼(Column)으로 구성된 2차원 형태의 자료구조입니다.

Pandas DataFrame은 레이블이있는 행 및 열을 사용한 2차원 테이블 형식의 데이터 구조입니다. DataFrame은 세 가지 주요 구성 요소는 데이터, 행(rows) 및 열(columns) 입니다. 즉, 데이터는 행과 열로 표 형식으로 정렬됩니다.

기존 저장 장치의 데이터 세트를 읽어서 DataFrame을 만들고 SQL 데이터베이스, CSV 파일 및 Excel 파일로 저장할 수 있습니다. DataFrame은 lists, dictionary 등에서 만들 수 있습니다.

다음은 list를 사용하여 DataFrame을 만드는 예제 입니다.

# import pandas as pd
import pandas as pd
# list of strings
lst = ['Geeks', 'For', 'Geeks', 'is', 'portal', 'for', 'Geeks']
# Calling DataFrame constructor on list
df = pd.DataFrame(lst)
print(df)

위의 예제를 실행해 보면 다음과 같이 출력 됩니다.

     0
0   Geeks
1     For
2   Geeks
3      is
4  portal
5     for
6   Geeks

Series와 비슷한 구조로 변환될 수있는 객체의 dict를 전달하여 DataFrame을 생성할 수도 있습니다.

import pandas as pd
import numpy as np
df2 = pd.DataFrame({'A': 1.,
                    'B': pd.Timestamp('20190102'),
                    'C': pd.Series(1, index=list(range(4)), dtype='float32'),
                    'D': np.array([3] * 4, dtype='int32'),
                    'E': pd.Categorical(["test", "train", "test", "train"]),
                    'F': 'foo'})
print(df2)

위의 예제를 실행해 보면 다음과 같이 출력 됩니다.

A          B        C   D      E    F
0  1.0 2019-01-02  1.0  3   test  foo
1  1.0 2019-01-02  1.0  3  train  foo
2  1.0 2019-01-02  1.0  3   test  foo
3  1.0 2019-01-02  1.0  3  train  foo
Data Structure Intro section
https://www.geeksforgeeks.org/python-pandas-dataframe/