OneBook(Python & Deep Learning)
  • 한곳에서 끝내는 파이썬 & 머신러닝 & 딥러닝
  • 문서 작업을 시작하며
  • 1. 인공지능(Artificial Intelligence) 시대
    • 1.1. 인공지능이란 도대체 무엇인가?
    • 1.2. 4차 산업혁명
    • 1.3. 인공지능의 역사
    • 1.4. 인공지능 > 머신러닝 > 딥러닝
    • 1.5. 머신러닝
    • 1.6. 머신러닝 알고리즘
      • 1.6.1. 지도 학습 (Supervised Learning)
      • 1.6.2. 비지도 학습 (Unsupervised learning)
      • 1.6.3. 강화 학습(Reinforcement Learning)
    • 1.7. 인공신경망(ANN)
    • 1.8. 딥러닝
  • 2. 기본 상식
    • 2.1. 기본 용어의 이해
      • 2.1.1. CPU와 GPU의 차이
      • 2.1.2. 오픈소스(Open Source)
      • 2.1.3. 깃허브(GitHub)
      • 2.1.4. 위키 Wiki
      • 2.1.5. 아나콘다(Anaconda)
      • 2.1.6. 활성화 함수
      • 2.1.5. 딥러닝 프레임워크 소개
    • 2.2. 텐서플로(Tensorflow)
    • 2.3. 케라스(Keras)
    • 2.4. 파이토치(PyTorch)
    • 2.5. 학습에 필요한 중요한 도구와 라이브러리들
      • 2.5.1. 주피터 노트북(Jupyter Notebook)
      • 2.5.2. 파이참(PyCharm)
      • 2.5.3. 스파이더(Spyder)
      • 2.5.4. 넘파이(NumPy)
      • 2.5.5. 싸이파이(SciPy)
      • 2.5.6. Matplotlib
      • 2.5.7. 판다스(Pandas)
      • 2.5.8. 장고(Django)
      • 2.5.9. 파이큐티(pyQT)
      • 2.5.10. 싸이킷런(Scikit-learn)(Sklearn)
      • 2.5.11. CUDA & cuDNN
      • 2.5.12. 파이썬 표준 내장 라이브러리
    • 2.6. AI공부에 필요한 기본지식 3가지
      • 2.6.1. 수학
      • 2.6.2. 프로그래밍 기술
      • 2.6.3. AI의 적용 대상 산업에 대한 지식
  • 3. 개발 환경설정
    • 3.1. 윈도우 환경에서 설치하기
      • 3.1.1. 아나콘다 설치 (파이썬 설치)
        • 1) 아나콘다 패키지 업데이트
        • 2) conda에서 파이썬 가상 환경 (virtual environments) 생성하기
        • 3) NVIDIA GPU 환경 설정하기
      • 3.1.2. 텐서플로 설치
      • 3.1.3. 케라스 설치
      • 3.1.4. Jupyter Notebook 설치
      • 3.1.5. Visual Studio Code 설치
      • 3.1.6. 파이참 설치
        • 1) 파이참 가상환경 설정
        • 2) 파이참 환경 설정
        • 3) 설치된 라이브러리들의 버전 확인 하기
    • 3.2. 리눅스 환경에서 설치하기
      • 3.2.1. 아나콘다 설치(파이썬 설치)
      • 3.2.2. 텐서플로 설치
      • 3.2.3. 케라스 설치
      • 3.2.4. 장고 설치
      • 3.2.5. 파이참(PyCharm) 설치
        • 1) 파이참 가상환경 설정
  • 4. 파이썬 기초 학습
    • 4.1. 파이썬(Python)
    • 4.2. 파이썬의 특징
    • 4.3. 파이썬 기본 문법
      • 4.3.1. 대화형과 스크립트 모드 프로그래밍
      • 4.3.2. 모듈의 사용(import)
      • 4.3.3. 파이썬 식별자(Identifiers)
      • 4.3.4. 예약어(Reserved Words)
      • 4.3.5. 행(Lines)과 들여쓰기(Indentation)
      • 4.3.6. 문자열 표시
      • 4.3.7. 주석
      • 4.3.8. 파이썬 변수(Variables)
    • 4.4. 자료형과 연산자
      • 4.4.1. 자료형
      • 4.4.2. 파이썬 연산자
    • 4.5. 조건문과 반복문
      • 4.5.1. 조건문
      • 4.5.2. 반복문
    • 4.6. 함수
      • 4.6.1. 함수의 종류
    • 4.7. 모듈(Modules)
      • 4.7.1. 모듈의 참조 위치
      • 4.7.2. 네임스페이스(Namespace)와 범위(Scoping)
      • 4.7.3. dir( ) 함수
      • 4.7.4. 패키지(Packages)
      • 4.7.5. 기본 내장 모듈
    • 4.8. 숫자형 활용
      • 4.8.1. 실습: 계산기 만들기
    • 4.9. 문자열(Strings) 활용
      • 4.9.1. Unicode 한글의 사용
      • 4.9.2. 이스케이프 문자
      • 4.9.3. 문자열 연산자
      • 4.9.4. 문자열 포맷 연산자
      • 4.9.5. 내장 문자열 함수
    • 4.10. 시퀀스(Sequence) 자료형 활용
      • 4.10.1. 리스트(Lists)
      • 4.10.2. 튜플(Tuple)
      • 4.10.3. 딕셔너리(Dictionary)
    • 4.11 Class
    • 4.12. Date & Time
    • 4.13. 파이썬 에러처리
  • 5. 기초수학
  • 6. 머신러닝을 위한 파이썬
  • 7. 텐서플로 2.x
  • 8. 딥러닝을 이용한 자연어 처리 입문
  • 9. 파이토치로 시작하는 딥 러닝 입문
  • 9.6 6. Pytorch lightning
  • A1. 필수 학습 라이브러리들
    • 4.1 NumPy
      • 4.1.1. Basic Operations
      • 4.1.2. Indexing, Slicing 그리고 Iterating
      • 3.13.3. Shape Manipulation
    • 4.2 Matplotlib
    • 4.3 SciPy
      • 4.3.1. Interpolation
      • 4.3.2. Optimization
      • 4.3.3. Fast Fourier transforms: scipy.fftpack
    • 4.4 Pandas
      • 4.4.1 Pandas 자료구조
      • 4.4.2 Pandas 활용하기
  • A2. 머신러닝 & 딥러닝
    • 5.1. 머신러닝 개념 소개
      • 5.1.1. 경사하강법(Gradient Descent )
      • 5.1.2. 분류 (Classification)
      • 5.1.3. MNIST Dataset 소개
    • 5.2. 딥러닝 개념 소개
      • 5.2.1. 퍼셉트론
      • 5.2.2. 인공 신경망
      • 5.2.3. 대표적인 딥러닝 모델
    • 5.3. Tensorflow를 사용한 학습
      • 5.3.1. TensorFlow 기본 메커니즘
      • 5.3.2. Tensorflow Types
      • 5.3.3. 기본 동작 실습
      • 5.3.4. 선형 회귀
      • 5.3.5 로지스틱 회귀
    • 5.4. Keras를 사용한 학습
      • 5.4.1. Keras로 분석한 선형 회귀
      • 5.4.2. CNN(Convolutional Neural Network)
      • 5.4.3. Fashion MNIST with Keras
    • 5.5. 웹 크롤링
      • 5.5.1. requests와 BeautifulSoup으로 웹 크롤러 만들기
Powered by GitBook
On this page

Was this helpful?

  1. 2. 기본 상식
  2. 2.5. 학습에 필요한 중요한 도구와 라이브러리들

2.5.9. 파이큐티(pyQT)

파이썬으로 GUI 프로그래밍을 하려면 wxPython1, PyQt2, TkInter 등과 같은 패키지를 사용합니다. 그중 TkInter는 파이썬의 공식적인 GUI 패키지로서 별도의 프로그램을 설치하지 않고도 바로 사용할 수 있습니다.

PyQt는 이름에서 알 수 있듯이 Qt라는 GUI 프레임워크의 파이썬 버전입니다. Qt는 GUI 프로그램 개발에 널리 쓰이는 크로스 플랫폼 프레임워크로서 주로 C++ 프로그래밍 언어를 사용해 프로그래밍합니다. 현재 공식적으로 지원하는 Qt 메이저 버전은 Qt4와 Qt5입니다. 그래서 Qt의 파이썬 바인딩인 PyQt도 PyQt4와 PyQt5로 두 가지 버전이 제공됩니다. PyQT를 사용해서 얻을 수 있는 가장 큰 이점 중 하나는 쉽고 편리하며 직관적인 인터페이스를 가진 GUI 편집기인 Qt Designer 를 사용할 수 있기 때문입니다.

Previous2.5.8. 장고(Django)Next2.5.10. 싸이킷런(Scikit-learn)(Sklearn)

Last updated 6 years ago

Was this helpful?